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[i]   Three theoretical descriptions, namely, the local description, the flux tube integrated 
description and the ballooning-mode type description, of the equatorial plasma instability 
are presented for comparisons. On the basis of physical considerations it is argued that the 
ballooning-mode type description is comparatively the most accurate and complete 
description of plasma instability in the equatorial ionosphere where the inhomogeneous 
plasma is embedded in a dipole magnetic field. The growth rates obtained fi-om the 
ballooning-mode type description are therefore the most accurate growth rates. In 
comparison, the local description overestimates the growth rates up to a certain altitude 
and then underestimates them, while the flux tube integrated description underestimates 
the growth rates at almost all altitudes where the growth rates are significant. This is 
shown for two sets of ionospheric plasma conditions. It is further pointed out that only the 
ballooning-mode type description provides useful information on the wavelength 
dependence of the growth rates as well as on the spatial profiles of the excited modes. The 
localized spatial structures of the linear modes along the magnetic field line that are found 
in the ballooning-mode type description are expected to impose topological constraints on 
the nonlinear evolution of the instability and thus to play an important role in the 
determination of the nonlinear state of the plasma.     INDEXTERMS: 2415 ionosphere: Equatorial 
ionosphere; 2439 Ionosphere: Ionospheric irregularities; 2471 Ionosphere: Plasma waves and instabilities; 
2437 Ionosphere: Ionospheric dynamics; KEYWORDS: equatorial ionosphere, plasma instability, density 
irregularities, growth rates, flux tube 

1.   Introduction 

[2] The theoretical as well as the practical importance of 
equatorial plasma instability, which is driven by the com- 
bined effects of gravity, eastward electric field, and verti- 
cally downward neutral wind in the presence of a vertically 
upward density gradient, is now well recognized. The 
instability generates density fluctuations (irregularities) in 
the F region ionosphere after sunset, and these density 
irregularities are commonly referred to as the equatorial 
spread F (ESF). The practical importance of the instability 
lies in the fact that in the nonlinear stage of its evolution it 
can result in the formation of the so-called "bubbles" and 
"plumes," which are large-scale density-depleted structures 
that cause scintillation of the radio signals used in commu- 
nication and navigation systems. Although the plasma 
instability and its consequences are usually observed in 
the fully aeveloped nonlinear state so that a nonlinear theory 
is needed to explain the observations, the linear theory is 
useful for understanding the basic physical mechanism of 
the instability and the characteristics of the excited plasma 
modes. In addition, the growth rates obtained from the 
linear theory can be used to specify/predict the region of 
the equatorial ionosphere where bubbles and plumes may be 
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expected and thus can be of importance to a space weather 
specification/forecasting scheme. Thus, for a better under- 
standing of the instability process as well as for an accurate 
calculation of the growth rates, it is essential that a physi- 
cally accurate description of the linear stage of the insta- 
bility be adopted. 

[3] There are three theoretical descriptions of the insta- 
bility that are found in the literature. Among them, the 
most elementary description [see e.g., Kelley, 1989] 
assumes flute type perturbations meaning k • BQ = 0, 
where k is the wave vector and BQ is the magnetic field, 
which is taken to be imiform. In other words, this descrip- 
tion neglects the parallel (to BQ) dynamics of electrons and 
ions in the plasma. Furthermore, it makes the so-called 
local approximation in treating the plasma inhomogeneity 
along the vertical direction and calculates the growth rate 
by using the local value of the vertical density gradient at 
the magnetic equator (say). The local approximation impo- 
ses a restrictive condition on the perpendicular-Wavelengths 
of the excited modes; namely, the wavelengths must be 
small compared to the scale length of the vertical density 
gradient. The above conditions are, in fact, the limiting 
conditions under which the classical interchange instability 
is reaUzed. In the equatorial F region, where the ion-neutral 
coUisions dominate over the inertial effects, the mstability 
is termed as the coUisional interchange instability and is 
also referred to as the generahzed Rayleigh-Taylor insta- 
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bility. In reality, the flute-type perturbations are not con- 
sistent with the experimental observation, which indicates 
that the unstable perturbations are extended along the 
magnetic field line and that the plasma along almost the 
entire field line participates in the instability process. This 
is an issue of particular importance in the study of the 
equatorial plasma instability, since the plasma is spatially 
nonuniform along the curved dipole magnetic field line and 
since, as is well known in plasma physics, such spatial 
inhomogeneity can have significant effect on both the 
topology and the growth rate of the excited modes. In an 
effort to include the effects of plasma inhomogeneity along 
the field line, G. Haerendel (Theory of equatorial spread F, 
preprint, 1973, hereinafter referred to as Haerendel, pre- 
print, 1973) introduced the flux tube integrated description. 
In this description the plasma equations are first integrated 
along the field line and then analyzed to obtain the growth 
rates of the unstable perturbations. Consequently, the 
effects of plasma inhomogeneity along the field line are 
taken into account only in a gross manner. Besides, the flux 
tube integration is made possible by assuming that the field 
lines are equipotentials. The equipotential assumption 
can be justified if the parallel electrical conductivity is 
extremely large everywhere along the field line. In reality, 
the parallel conductivity may be large near the equator at F 
region altitudes, but away fi-om the equator it decreases 
rapidly as the dipole field line bends into the lower-altitude 
regions. As a result, the equipotential assumption breaks 
down. In fact, the finite parallel electric field that is 
sustained along the curved field line due to finite resistivity 
can significantly influence the excitation of the unstable 
plasma modes. The ballooning-mode type description 
[Basu and Coppi, 1983, 1984; Basu, 1998] avoids the 
equipotential assumption. Instead, it allows for the varia- 
tion of perturbed density and electrostatic potential along 
the dipole magnetic field line in recognition of the finite 
electrical resistivity and determines growth rates by solving 
the differential equation that describes the variation of the 
perturbation amplitudes. Thus it includes the fiill impact of 
the spatial inhomogeneity, including that of the parallel 
electric field, on the growth rates. So, on the basis of 
physical considerations alone it may be argued that the 
ballooning-mode type description is comparatively the 
most accurate description of tiie plasma instability in the 
equatorial ionosphere where the inhomogeneous plasma is 
embedded in a dipole magnetic field. The growth rates 
obtained from this description should therefore be the most 
accurate growth rates. The spatially localized plasma 
modes, which are found in this description and which are 
made possible by the sharp increase of plasma resistivity 
along the curved magnetic field line, are topologically 
similar to the so-called ballooning modes [Coppi et al, 
1979], although the excitation mechanism is different. The 
purpose of this paper is to present quantitative comparisons 
of the growth rates obtained fi-om the three theoretical 
descriptions and to point out other significant differences. 

[4] Although the theoretical formulations of the three 
descriptions can be found in the published literature, we 
repeat them in sections 2 and 3 for the sake of completeness 
and for convenience of comparisons. In doing so, we believe 
that we have improved upon the eariier presentations. The 
quantitative comparisons are presented in section 4. 

The paper is concluded with a summary and discussion in 
section 5. 

2.   Plasma Model 

[5] The collisional plasma instability in the nighttime 
equatorial ionosphere is described by the particle (electron) 
conservation equation 

(1) f+ V-(«V,) = -/? 

and the charge conservation equation 

V-j = eV-KV,-V,)] = 0, (2) 

where n is the particle density, R is the rate of change of 
particle density due to recombination process, j is the current 
density, and the quasi-neutrality condition {n^ = «, = n) is 
assumed. The flow velocities V^ and V,-, where the subscripts 
e and / refer to electrons and ions, respectively, are 
determined fi-om the momentum balance equations 

0 = -e(E-F -V, X Bo) -m,v„(V, - V,) -m,v,„(V, - V„) + m,g, 

(3) 

0 = e(E + - V,- X Bo) + m,v„(V, - V,) - /n,v,„(V,- - V„) + m,g, 

(4) 

where Vg„ is the electron-neutral collision fi-equency, Vg, is the 
electron-ion collision fi-equency, v,„ is the ion-neutral 
collision fi-equency, g is the acceleration due to gravity, V„ 
is the neutral wind velocity, and the other quantities have 
their standard meanings. The inertia terms in the momentum 
balance equations have been ignored since the growth rate 7 
of the instability satisfies the inequality 7 < (v„„ v^„, v^,) in 
the altitude region of interest. The pressure gradient terms 
have small effects on the evolution of the ambient plasma but 
can have significant damping effects on the excited plasma 
modes if the wavelengths of the modes are shorter than 
~100 m. However, they are neglected in this paper since 
longer wavelength modes will be considered. 

[6] In the altitude range of our interest, iyj^^), (vjfi^) 
< 1, but (v,„/n,) can vary fi-om being larger than unity (in 
the E region) to being much less than unity (in the F 
region). Here the fi values are the cyclotron fi-equencies. 
So, neglecting terms of the order of {vJQ.^), (v^/fi^), 
(WeV£,„)/(ffi,v,„), g/n^ and smaller, but retaining (v,„/fi,) to 
all orders, we find from equations (3) and (4) 

V.=^ExBo-i^+fl+^)M + v„„, (5) 

^'■ = TT47wfe'^^° + nk^^«°+S 

ii^^^b) + —. 
v,„ (6) 

Here v^ = v^,- + v^,,, g = g + v,„V,„ and the subscripts || and ± 
denote parallel and perpendicular (to BQ) components. 



BASU: EQUATORIAL PLASMA INSTABILITY SIA 18-3 

respectively. The current density j calculated from equations 
(5) and (6) can be written as 

j = ap  Ej. + 
gxB, /Ex Bo 

CVin 
g± 

+ a||E|| +- 
v,„ 

where 

(Tp = 
nl^i 

Bo l+v?/fi? 

CTH ■ 
'■M = 7rCTp 

5o i + v?/fi?   n, 

ail =  
"     rrieVe 

(7) 

(8) 

(9) 

(10) 

are the Pedersen, Hall, and parallel (specific) conductivities, 
respectively. 

3.   Linear Stability Analysis 

[7] The linear stability analysis is performed by consid- 
ering small-amplitude perturbations (denoted by subscript 
1) from the equilibrium state (denoted by subscript 0) and 
by solving the first-order, linearized equations 

dn 

~dt 
i + V-(noVei+«iV^) = 0, 

v-j,=o, 

where V^o = c(Eo x Bo)/5o and 

c          _       eErii 
V,i=^EixBo ^ 

El X Bo . n\ 
ji =ffpoEii -ano—^ I-CT||OEI|| +JO — 

/>o "0 

(11) 

(12) 

(13) 

(14) 

with 

Jo = tJpo ( Eoj. + 
gxBo /EQ X Bo 

• t^HO I  5  
5o  .     , ^ . 

g±    +Jo||- 

(15) 

tion to the overall growth of the instability is very small and 
can be neglected. The recombination loss term, however, 
plays an important role in determining the equilibrium 
plasma state from the zero-order form of equation (1), when 
the ambient fields EQ, BQ, and the neutral wind velocity V„ 
are specified. 

3.1.   Local Description (Collisional Interchange 
Instability) 

[8] Neglecting the parallel (to BQ) components of V^i and 
ji, and considering electrostatic modes so that Ej = —Vj_ 
(j)i, where 4)i is the electrostatic potential, we find from 
equations (11) and (12) that 

The recombination loss term has been omitted in equation 
(11) for the following reason. The plasma instability occurs 
primarily in the F region where the recombination loss term 
is v^n, VR being the recombination frequency. If VR is taken 
to be spatially uniform, then it can be shown that the time 
evolution of ni/«o is unaffected by the recombination loss 
\Huba et al, 1996; Basu, 1997]. It is true, as shown in 
sections 3.2 and 3.3, that there are some contributions to the 
instability from the plasma in the E region, where the 
recombination loss is ocn^ and thus introduces some 
damping of «i/no locally. However, this damping contribu- 

^ + V.o-V, n\ 
Bl 

(BQ X Vj.(t)i)-Vj.no, (16) 

vi + '^™ 1 

apo noBo 
Vino • (Bo X Vi) 

1 

0pono 
-Jo-Vj.«i, (17) 

where the local approximation Vi > (Vx^c/wo) • Vj_ has 
been made and the spatial variation of v,„ has been 
neglected. Next, considering the perturbed quantities to 
vary as ~ exp (7? + zk^ • rj_), using (aHo/crpo)[(k± x Bo) • 
Vj_Mo]/(«o5o) < ^1 and combining equations (16) and (17), 
we obtain the local dispersion relation 

7 -I- zkj. ■ Veo = 
(ki X BQ) ■ Vi«o 

rtoBokl 

CTHO gj_ 

CTpO Vin 

—toj. -I 5— 

(18) 

Applying this result to the magnetic equator, where VHQ > 0 
and g < 0 in the upward direction (taken to be the x direction 
of a Cartesian coordinate system), BQ is northward (z 
direction), and choosing EQ and kx to be in the eastward 
direction (y direction), the explicit expression for the 
growth rate is found to be 

Ln  \Vm        Bo 
Vn.+ a- "V' (19) 

which is independent of A:x. Here l/L„ = d]a noldx. A positive 
definite growth rate is obtained when Eoy > 0,V,^<0 and 
V„y > 0. This is a well-known result for collisional 
interchange instability (also referred to as generalized 
Rayleigh-Taylor instability) that includes not only the effects 
of gravity and ambient electric field but also those of both the 
zonal and the vertical components of the neutral wind 
velocity [see, e.g., Kelley, 1989]. 

3.2.   Flux Tube Integrated Description 
[9] In the flux tube integrated description, introduced by 

Haerendel (preprint, 1973), the particle and charge conser- 
vation equations are first integrated along the magnetic field 
with the assumption that the field lines are equipotentials. 
The perturbation analysis is then applied to the integrated 
equations to determine the instability. The details of the 
derivation of those equations can be found in the work of 
Haerendel (preprint, 1973) and Haerendel et al. [1992]. Here 
we briefly outline the procedure and present the results. 
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[lo] Before integrating, the particle flux and the current 
density are expressed in the local dipole coordinate system 
(p, V, s) with unit vectors Cp, e^, ey where Cp is perpendicular 
to Bo (= Boey) and lies in the meridian plane pointing 
upward and e^, = ey x Cp. The dipole coordinate system can 
be defined in terms of the spherical coordinate system (r, \|/, 
9), with unit vectors e,., e,^_ Ce as 

P = cos^e' 
sin 6, (20) 

where 6 being measured from the equatorial plane is the 
magnetic latitude and /-Q is the radial distance from the 
Earth's center at which a field line intersects the equatorial 
plane. The equation for a field line that intersects the 
equatorial plane at_r = ro is r = T-Q COS^ G and BQ is 
represented by BQ = % (ro/r)\-2sm 0 6^ + cos 6 eg) = Bo,£,. 
+ BoflCo, so that Bo = BQ (ro/rf (1 + Ssin^ 9)"^ and BQ = BQ 
(/• = /"o, 9 = 0). The unit vectors in the two coordinate 
systems are related by Cp = {B^JBQ)^, - (BJBQ)^^, e|| = 
{BoJBo)er + (Bo(/Bo)eQ, and 61^ = 6^. Furthermore, the scale 
factors (Ap, A^, h,), which describe the magnetic field 
geometry, are 

cos'0 

(1 + 3sin^ e) 1/2 
, Ay =rcos6, hs ■ {'■Irof 

(l+Ssin^e) 

(21) 

The flux tube integrated transverse particle flux and current 
density are then expressed in the two-dimensional (Z,, ip) 
coordinate system placed in the equatorial plane, after 
relating the fields and quantities in the local (p, vj/, s) 
coordinate system to the fields and quantities in the (i, ip) 
coordinate system. Here L is the Mcllwain parameter 
defined by /-Q = REL (RE is the radius of Earth) and ip is the 
geomagnetic longitude. The resulting integrated equations 
are 

dN    „ 
^ + Vx-F.=0, 

V, -J, =0, 

(22) 

(23) 

where N is the flux tube content of the number density, Fx 
and Jx are the flux tube integrated transverse electron flux 
and current density, respectively, and Vx is the field line 
integrated transverse divergence operator defined as 

Vx-Ax = 
REL |(^^^)+|^^. (24) 

Using Vex given by equation (5), and following Haerendel 
(preprint, 1973) and Haerendel et al. [1992] we find 

FL= = 
CE^n 

BoN 

^--f* 
(25) 

(26) 

Here BQ is the equatorial value of the magnetic field 
strength at the location of the field line so that BQ = B°/L^, 

where BQ is the value on Earth's surface (Z, = 1), and A^ is 
given by 

N = RELJn{l-(,'yd(, (27) 

with (; = sin G. Similarly, from jx given by equation (7) we 
obtain 

JL = Ep£i - E„£^ + ^ (Epf/P + EH[/,") - ^/;,      (28) 

y, = Ep£, + EnE, - ^ (Epf/f - EHf/,") + ?fi;.     (29) 

Here g is the equatorial value of the gravitational 
acceleration at the location of the field line so that g = 
go/L^, where go is the value on Earth's surface (1=1), and 
the following definitions have been used: 

Ep=/?£Z, /"ap(H-3C^)rf(; (30) 

T,p = REL j apdC, (31) 

^»=RELJa4\+3C,^y'^dC, (32) 

,U^ = RELJ '^^^-^77^'^^        (") 

2\l/2 

Epf/r = /?,i|apF„,iLl^rfC (34) 
(1-CT 

^nU-=RELJa,K,-l±^^dC^ 
o-e 

J   Vin    1 - C^ 

JH=RELJ 
2\l/2 

OH (1+3C 
V,„      (,_;2)3 -rfC- 

(35) 

(36) 

(37) 

(38) 

These definitions, with the exception of the last two, are the 
same as those of Haerendel (preprint, 1973) and Haerendel 
etal [1992]. 

[11] Considering A^ = TVo + N^ Ex = EQX - Vx(t)i where 
Eo± = ^oipCip and where the small amplitude perturbations 
A^i and (j)] are assumed to have the space-time dependence 
of the form /, (I, ip, t) = /, (Z, = Z,o) exp (7/ + im^>) 
(i.e., the L dependence of the perturbations is treated 
locally), one can derive the complete dispersion relation 
by combining the linearized versions of_equations (22) and 
(23). However, it is recognized that Epo » SHO//W and 
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Epo » {L/m){dY.m/dL), as hpRs > kfLdym/^i)- Then, 
keeping only the significant leading order terms we obtain 
a more usefiil linear dispersion relation 

1 
r   ~ ■ + ■;— 

J^N Spo      l-N 

CEo^        EHO ,,H        rrl 

On        luvn 
(39) 

Also, substituting for ji in equation (12) and neglecting the 
altitude variation of v,„ compared to that of «o. we find 

-m CTpo • 
CTHO 9]nn()\~ 

CTPO      5p 

f imhf,hsjo^ + Ap Vo|| ^ j ~ • (42) 

which closely resembles the form of the local expression 
(19). In the above, LN is the scale length of the gradient of 
tiie flux tube integrated density, evaluated locally at I = ZQ 

and defmed by 

\_d_ 
Rsdl 

\A{L^NO (40) 

and the flux tube integrated quantities with subscript 0 are 
the unperturbed values of the same. A similar dispersion 
relation was presented earher by Sultan [1996], although his 
notations are different from ours. Haerendel's (preprint, 
1973) expression for the growth rate does not include the 
effects of eastward electric field and neutral wind. Both 
Haerendel (preprint, 1973) and Sultan [1996] omitted the 
factor 1/(1 + v?/n?) in the gravitational term of J^p. This 
factor starts to deviate from unity below 150 km and should 
be included in order to get a more accurate value of the 
integrated quantity. In our presentation it is included in /p, 
which has been defmed in such a way that the gravitational 
term m 7 can be unmediately recognized to be of the form: 
g/v^LN- It is clear that the growth rate given by equation 
(39) is different from the local growthj-ate equation (19), 
since the integrated quantities LN, (Ipo/^po), (^Ho/Spo)?/^ 
and Ul are different from the corresponding local values. 
We also note that to this lowest significant order of analysis, 
the flux tube integrated growth rate, like the local growth 
rate, is independent of wavelength. 

3.3.   Ballooning-Mode Type Description 
[12] In this description the equipotential assumption is 

discarded and the plasma inhomogeneity along the magnetic 
field is freated rigorously by retaining the parallel dynamics 
in the analysis. 

[13] We refer to the dipole coordinate system described 
in the previous section and consider an equilibrium plasma 
state described by KQ = no (p, s), EQ = Eo^e^, and g = 
—gep. The equilibrium density distribution is determined 
from the conservation equations when the zero-order 
(ambient) electric fields and neutral wind velocities are 
specified. The stability of small-amplitude perhirbations is 
studied by retaining the parallel components of Vgi and ji. 
As before, electtostatic perturbation is considered and the 
perturbed quantities are assumed to have space-time 
dependence of the form A] (p, \\f, s, t) = Ai (p = po, s) 
exp ("yf + im v)/), so that the p-dependence of the perturba- 
tions is freated locally. Substituting for V^i in equation 
(11), we find 

n\ 
i— no 

im   fd In «o 
h^hyf, \   dp Bo 

a 
enohph^hs ds \       hs    ds 

<i|io 
hf,h^ 

(41) 

At this point, we recall that the equation for a field line that 
intersects the equatorial plane at r = TQ is r = ro cos 6, 
where |6| < (Tr/12) for the ionospheric altitudes involved. 
Furthermore, the excited modes are found to be locahzed 
along the field line with localization distances that 
correspond to even smaller values of |9|. Hence s = A-QO 
and SIVQ < 1 may be used. Then it can be verified that 
hph^lhs « VQ to leading order and may be taken outside the 
derivatives in equations (41) and (42) without infroducing 
any significant error, hi addition, we assume that Qi^l 
/nAp)(aHo/apo)(51n «o/9p) ~ {ralm){\IL„){vJ^d < 1, 
where L„ = hp/{d]n no/dp). This condition implies that 
k^L„ > (vJQ.,), where k^ (= m/ro) represents the 
longitudinal wave number, and it is easily satisfied. Then, 
combining equations (41) and (42) and using the expres- 
sion foTjo^ while neglectingyoii hi comparison, we obtain a 
second-order differential equation that describes the spatial 
profile (along BQ) of the normal modes. The differential 
equation is 

-+S'^»')4li""«5i-*^./«*' ds 

^op-r^(^, a-^"' Ui=0, (43) 

where Fop = cE(y^lBo,f(s) = hrolh^, R(s) = (TPO/CT||O = [(VeV,„)/ 
[(v.v,„)/(fi,0,)]/(l + vmf), and 

^iO^i = 
l+^„/n? Q; 

Vmf Vo,+ (44) 

For the purpose of this paper, we ignore the imaginary 
term in equation (43) and consider instead the simplified 
form 

1 
CTiin ds \   "   ds 

■^^/(^)^(^) 

■{■ 
1 

^'"'   vA^'   a^* = 0. (45) 

Equation (45) is an eigenvalue equation m which the 
eigenvalue 7 (the growth rate) is determined by requiring 
that the eigenftmction (^i be bounded at large value of |5|. 
The numerical procedure finds a solution of the equation for 
a given value of 7 and then 7 is varied jmtil the required 
well-behaved solution with (j)i —> 0 and d(^i/ds -^ 0 at large 
value of \s\ is achieved. The spatially bounded solutions of 
(|)i are made possible primarily due to the sharp increase of 
R(s) along the curved magnetic field line. One immediate 
distinction between the ballooning-mode description and the 
other two descriptions, which can be observed from equation 
(45), is that the spatial profiles of the excited modes as well 
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as the growth rates depend on the wavelength \ (= I-K/IC^) 
explicitly. 

[14] The numerical solutions of equation (45) are pre- 
sented in the next section. Here we consider a heuristic 
analysis. We ignore the s- variation of all the equilibrium 
plasma parameters, consider instead their values ats = so = 0 
(say), and replace d/ds by /^||. The differential equation is 
thus reduced to an algebraic equation for ^,. The nontrivial 
solution of the equation determines 7, which is 

L„ \Vin 
+ V„o + 

ill    "") 
m 

m+kjiki (46) 

Comparison with equation (19) shows that this growth rate is 
smaller than the local growth rate by the factor /?(0)/[/?(0) + 
i||/^]. To have an estimate of this factor, we consider ;t|| > it/ 
2/ in order to simulate the boundary condition of the problem, 
where 2/ is thejength of a field line, and take / ~ 1.5 x 10^ 
km, /{(O) ~ 10"' as the typical values of the parameters in the 
bottomside of F region. Then, kjlk^ is found to be either 
comparable to or larger than R{jS) when X^ (wavelength in the 
east-west direction) >2 km. So, the growth rates, given by 
equation (46), are much smaller than the local growth rates 
when \ > 2 km. When X^ < 2 km so that Arf/A/< ^(0), the 
grovi^h rates approach the local growth rates. These 
conclusions are, of course, based on the heuristic analysis. 
Evaluation of 7 from the numerical solution of equation (45) 
shows that the grovi^h rate given by the ballooning-mode 
type description is significantly different from that given by 
the local description even when X^ = 300 m. 

[15] Like the local and the flux tube integrated descrip- 
tions, the ballooning-mode type description presented here 
treats the effects of plasma inhomogeneity in the vertical 
direction locally. This has been done for the sake of 
comparisons. A more accurate description considers the 
variation of perturbation amplitudes along the vertical 
direction as well. When this is done, the growth rates are 
determined by an eigenvalue equation which, unlike equa- 
tion (45), is a second-order partial differential equation in 
two-dimensional (p, 5) space [see Basu, 1998]. 

4.   Numerical Results 

[16] In this section, the growth rates obtained from the 
three theoretical descriptions, presented in the previous 
section, are numerically evaluated for comparisons. We 
use the symbols 7L, 7F, and 73, respectively, to refer to the 
three grovith rates. The required inputs to the calculations are 
the ambient electron density («o), the scale length of density 
gradient (Z,„), and the collision frequencies (v^, v,„) as a 
ftinction of; and s. We recall that the variable C is related to 
the distance s along a field line by j ^ ro C, as (^ < 1 in the 
altitude region of interest. In this paper, V„ is neglected for 
simplicity. The Parameterized Ionospheric Model (PIM) of 
Daniell et al. [1995] and the Mass Spectrometer Incoherent 
Scatter (MSIS) thermosphere model of Hedin [1987] are 
used to obtain the ambient electron density and the neutral 
densities as a fiinction of altitude and latitude for the 
geophysical conditions of 21 June 2000 and 20 April 
2001 in the eariy evening (1900 LT). These 2 days were 
chosen in order to study the plasma instability during 
solstice and equinox conditions, when distinctly different 

vertical plasma drift velocities are observed [Fejer et al 
1999]. 

[17] The calculations proceed in the following way. The 
outputs of PIM and MSIS-86 are used to generate the 
electron densities and the neutral densities along a given 
magnetic field line whose apex altitude (the altitude at 
which the field line intersects the equatorial plane) is, say, 
h (= ro - RE). Using the electron and the neutral densities, 
Ve (= Vei + Ve„), v„, and the various conductivities along the 
field line are then evaluated. For the purposes of this paper, 
the following formulae [Kelley, 1989; Schunk and Nagy, 
1980], which are quite useful for quick estimates of the 
collision frequencies, are used: 

Ven = (5.4 X 10-'")«„r;/2 

vi„ ^ (2.6 X 10-')«„/A/'/2. 

(47) 

(48) 

(49) 

More rigorous expressions for the collision frequencies can 
be found in the work of Schunk and Nagy [1980], for 
example, and should be used in more accurate modeling 
studies. In the above expressions, n„ is the total neutral 
density in cm~^, «o is the electron density in cm~^, 7; is the 
electron temperature in degrees Kelvin, and M is the mean 
molecular weight of the ions. We take T^ « T„ at night and at 
the altitudes of our interest, where T„ is the neutral 

• temperature and is obtained from the MSIS-86 model. The 
single ion formulation adopted in this paper considers O"^ to 
be the ion in the F region and NO"^ and O2 lumped into one 
ion to be the ion in the E region. The dividing altitude 
between E and F regions is taken to be 160 km in order to be 
consistent with PIM. This is kept in mind when v,„ and fi, are 
calculated along the dipole field line. The values of the 
cyclotron frequencies (f2^ and fi,) are calculated with the 
help of 5o = (5o/i^)(l + 3;2)"^/(l - (^y, where Bo = 0.3 G 
is chosen. The value of go is taken to be 9.8 m/s^. The field 
line integrations in section 3.2 are carried out from (; = 0 (the 
magnetic equator) to Coo (value of (; at which the height of 
the field line is 100 km) and, for simplicity, the two 
hemispheres are assumed to be symmetric about the 
magnetic equator. The three growth rates (7L, 7F, 7B) are 
then calculated using equations (19), (39), and (45), 
respectively. Finally, the above calculations are repeated 
for field lines with different values of ho. The results are 
presented in Figures 1 -6. 

[is] The four panels in Figure 1 show the ionospheric 
parameters («o, \IL„, v,„ and v^) as a fiinction of s{= si I), 
where 2/ is the length of the field line, for the geophysical 
conditions of 21 June 2000 at 1900 LT. The five curves in 
each panel are for five different field lines distinguished by 
their apex altitudes. These parameters are used in obtaining 
Figures 2 and 3. Figure 2 shows the growth rates obtained 
from the three descriptions as a ftinction of the apex altitude 
ho- The dashed curve represents the local growth rate 7L, 
given by equation (19) and evaluated at the magnetic equator 
(f = 0). The dot-dashed curve represents the flux tube 
integrated growth rate 7F, given by equation (39), while 
the four solid curves represent the growth rates 73, which are 
obtained from the solution of equation (45) for X^ = 300 m, 
500 m, 1 km, and 2 km. The outermost solid curve is for \ = 
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Figure 1. Profiles of the ionospheric parameters («o, l/^m v,« and v^) along a field line for the 
geophysical conditions on 21 June 2000 at 1900 LT. The labeled curves in each panel are for the field 
lines whose apex altitudes {ho) are (a) 240 km, (b) 260 km, (c) 300 km, (d) 360 km, and (e) 420 km. 

300 m and the mnermost is for X,^ = 2 km, demonstrating that 
the growth rate decreases with increasing perpendicular 
(east-west direction) wavelength at all altitudes. Figure 2 
shows that when compared to 7B> the local description 
overestimates the growth rates up to a certain altitude and 
then xmderestimates them, while the flux tube integrated 
description underestimates the growth rates for Xy < 1 km at 
all altitudes above 240 km. For longer (than 1 km) wave- 
lengths the flux tube integrated description and the balloon- 
ing-mode type description tend to yield similar g[owth rates 
at very low altitudes where the growth rates are small, but the 
difference persists at high altitudes. Earlier, Rappaport 
[1996] showed by means of a variational principle that the 

0.5 

Y(10-'s-') 

Figure 2. Altitude profiles of growth rates (7) for the 
ionospheric parameters shovm in Figure 1. The dashed curve 
represents the local growth rate (7L), the dot-dashed curve 
represents the flux tube integrated growth rate (7F), and the 
solid curves represent the ballooning-mode type growth rate 
(7B) for the perpendicular (east-west) wavelengths (300 m, 
500 m, 1 km, and 2 km). The outermost solid curve is for 
300 m, while the innermost one is for 2 km. 

flux tube integrated growth rate provides a lower bound to 
the true value of the growth rate, while the local grovsih rate 
provides an upper bound. Our results give more detailed and 
more accurate comparisons. If we denote the altitudes at 
which the growth rates are maximum by A^L (for local 
description), h^v (for flux tube integrated description) and 
hmB (for ballooning-mode type description), then we find 
that AmL < hmB < ^TBF- Furthermore, the vmstable regions 
predicted by both the flux tube integrated description and the 
ballooning-mode type description are higher in apex alti- 
tudes than that predicted by tiie local description. In partic- 
ular, the local growth rate (7L) becomes negative (meaning 
stability) above ~450 km which is the altitude of the peak 
density of the F layer at equatorial latitude. However, both 
7B and 7F remain positive well above 450Jcm. The two 
panels of Figure 3 show the spatial profiles of (^j, normalized 
to its maximum value ([)]„, along the field lines whose apex 
altitudes QIQ) are 300 and 420 km, respectively. The labeled 
curves in each panel are for X^ = 300 m, 500 m, 1 km, and 2 
km. The panel for AQ = 300 km shows that the short 
wavelength modes are well localized near the magnetic 
equator (i = 0). Thus the equipotential assumption is not at 
all vahd for the description of these modes. For longer 
wavelengths, the modes are more and more extended along 
the field line. The panel for h^ = 420 km shows that the 
maximum amplitude of the modes occurs at a distance away 
fi-om the magnetic equator when the wavelengths are short. 
However, when the wavelengths are longer (than 2 km), the 
mode amplitudes tend to maximize near the equator as in the 
case of ha = 300 km and the modes acquire flattop profiles 
extending to larger distances along the field line. It may be 
argued that for these long wavelength modes the equipoten- 
tial assumption is valid over the distances where ^j is 
roughly constant. The mode profiles can be imderstood by 
examining the structure of equation (45) and by considering 
the profiles of v,„ and l/L„. 

[19] The four paiiels in Figure 4 show the ionospheric 
parameters (no, l/L„, v,„ and v^) as a fimction of s (= s/l), 
where 2/ is the length of the field line, for the geophysical 
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Ao=300km An =420 km 

Figure 3. Profiles of the perturbed potential cj),, normalized to its maximum value $,„„ along the field 
lines whose apex altitudes (ho) are 300 and 420 km. The labeled curves in each panel are for the 
perpendicular (east-west) wavelengths: (a) 300 m, (b) 500 m, (c) 1 km, and (d) 2 km. 

conditions of 20 April 2001. In this case the peak density of 
the F layer, at equatorial latitude, occurs at an altitude of 
~500 km. As before, the five curves in each panel are for 
five different field lines distinguished by their apex altitudes. 
The apex altitudes are higher in this case, since the vertical 
drift speed is larger (~28 m/s compared to ~11 m/s in the 
previous case). The curves are qualitatively similar to those 
in Figure 1. These parameters are used in obtaining Figures 5 
and 6. Figure 5 shows the three growth rates as a function of 
the apex altitude ho. As in the previous case, the local 
description overestimates the growth rates up to a certain 
altitude and then underestimates them. The flux tube inte- 
grated description underestimates the growth rates at all 
altitudes, except at the very low and at the very high altitudes 
where the growth rates are small. The unstable region is 
higher in altitude and the maximum growth rates are larger 
compared to those in the previous case. These are explained 
by the fact that the vertical drift speed is larger in the second 
case. The larger vertical drift speed increases the growth rate 
by mcreasing its own contribution to the growth rate and also 
by increasing the gravitational part of the growth rate by 
raising the plasma layer to a higher altitude where v,„ is 
smaller. Finally, the two panels of Figure 6 show the profiles 
of the unstable modes (for X^ = 300 m, 500 m, 1 km, and 2 

km) along field lines whose apex altitudes are 420 and 500 
km, respectively. These profiles are qualitatively similar to 
those in the previous case (Figure 3). 

[20] We conclude this section with some additional results 
that may be of interest to the modelers. In the above 
calculations of the flux tube integrated growth rates, the 
upper limit of the field line integrations has been taken to be 
C,ioo (value of C, at which the height of the field line is 100 km) 
because the model ionospheres virtually vanish below 100 
km. If this upper limit is changed to^C^, where A > 100 km, the 
integrated Pedersen conductivity Spo, which appears in the 
denominator of the gravitational part of the growth rate, 
decreases since the contribution fi-om the E region is reduced. 
The corresponding decrements are relatively small in the case 
of L^f and IpQ. The net result is that yf increases. Physically, 
this may be described as due to the reduction in the damping 
effect of the E region. This suggests that if for certain 
modeling purposes we are willing to ignore the important 
physical effect of the E region, 7F can be brought into a good 
agreement with 7B by choosing a suitable^value of C^. The 
spatial profiles of the perturbed potential cj), may provide a 
possible clue for this choice of 0,. To be specific, since for the 
long wavelength (X^ = 2 km) modes $, is almost constant for 
s ~ 0 - 0.7 (see the panel labeled ho = 420 km of Figure 3 and 

Figure 4. Profiles of the ionospheric parameters (MQ, 1/Z,„, V,„ and v.,) along a field line for the 
geophysical conditions on 20 April 2001 at 1900 LT. The labeled curves in each panel are for the field 
lines whose apex altitudes (ho) are (a) 300 km, (b) 360 km, (c) 420 km, (d) 450 km, and (e) 500 km. 
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r(io-=s-') 

Figure 5. Same as in Figure 2, except that the growth rates 
(7) are obtained for the ionospheric parameters shown in 
Figure 4. 

the panel labeled ho = 500 km of Figure 6), it is reasonable 
to expect that yp would be in close agreement with 7B if 
values o{C,h corresponding to i « 0.7 at those apex altitudes 
are chosen. Indeed, for those choices of C,h, 7F is found to be 
within 5% of 73 at those apex altitudes. However, 7p cannot 
be expected to agree with 7B at lower apex altitudes for the 
same C^/,, since the profiles of ([)i are different. In other 
words, there does not exist a single value of C,;, for which 7F 
would be in close agreement with 7B at all apex altitudes. 
Different values of (ij, have to be chosen for different apex 
altitudes and they can be found only by trial and error. 
These are illustrated in Figure 7. In Figure 7a the solid curve 
represents 7B (for X^, = 2 km) as a function of ho for the 
geophysical parameters given in Figure 1. The dashed curve 
represents 7F as a function of ho if C200^ which corresponds 
to 5 = 0.7 when ho = 420 km, is used as the upper limit in 
the field line integrations. It shows good agreement with 7B 
near 420 km, but poor agreement at lower altitudes. The 
dot-dashed curve in Figiu'e 7a, on the other hand, shows 
excellent agreement with 7B at all altitudes. This curve is 
obtained by using (^130 for ho < 330 km and dso for ho > 
330 km as the upper limits in the field line integrations. In 
Figure 7b the solid curve represents 73 as a function of ho 
for the geophysical parameters used in Figure 4. The dashed 
curve represents 7F as a function of ho if ^240= which 
corresponds to s = 0.7 when ho = 500 km, is used as the 
upper limit in the field line integrations. Again, it shows 
good agreement with 73 near 500 km, but poor agreement 
at lower altitudes. The dot-dashed curve in Figure 7b 

showing excellent agreement with 7B at all altitudes, on 
the other hand, is obtained by using C140 for ho < 420 km 
and C,i7o for ^0 > 420 km as the upper limits in the field line 
integrations. These findings are, of course, specific to the 
model ionospheres used in this paper 

5.   Summary and Discussion 

[21] In this paper we have presented for comparisons the 
three different theoretical descriptions of the linear stage of 
the equatorial plasma instability. Among the three, the local 
description, which is usually adopted in the study of 
interchange instability such as the Rayleigh-Taylor insta- 
bility, is physically the most inadequate description of the 
instability in inhomogeneous plasma such as that found in 
the equatorial ionosphere. Nevertheless, it gives us impor- 
tant understanding of the basic mechanism of the instability. 
The flux tube integrated description, introduced by Haer- 
endel (preprint, 1973) and often used in linear growth rate 
calculations, incorporates the effects of plasma inhomoge- 
neity along the field line only in a gross marmer Besides, 
the flux tube integration is made possible by the equipo- 
tential assumption, which breaks down as the dipole mag- 
netic field line curves into lower altitudes of increasing 
resistivity. In contrast, the ballooning-mode type description 
[Basu and Coppi, 1983, 1984; Basu, 1998] does not make 
the equipotential assumption; instead, allows for the varia- 
tion of perturbed density and electrostatic potential along 
the magnetic field line and includes the full impact of the 
spatial inhomogeneity along the field line on the growth 
rates. So, on the basis of physical considerations, it may be 
argued that the ballooning-mode type description is com- 
paratively the most accurate description of plasma instabil- 
ity in the equatorial ionosphere where the inhomogeneous 
plasma is embedded in a dipole magnetic field. The growth 
rates obtained from this description should, therefore, be the 
most accurate growth rates. Quantitative comparisons (Fig- 
ures 2 and 5) show that the local description overestimates 
the growth rates up to a certain altitude and then under- 
estimates them, while the flux tube integrated description 
imderestimates the growth rates at abnost all altitudes where 
the growth rates are significant. Moreover, unlike the local 
and the flux tube integrated descriptions, the ballooning- 
mode type description yields wavelength-dependent growth 
rates. So, for a given ionosphere the magnitude of the 
differences in the growth rates also depends on the perpen- 
dicular wavelengths of the unstable modes. For the model 
ionosphere given in Figure 1, the differences between 7F 

]_ K = 420km 

0.8 ^ <::^ 
0.6 - ~\ ">\\\ 
0.4 - >\ \\\ 
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0.2      0.4      0.6 0.2       0.4       0.6       0.8 

Figure 6. Profiles of the perturbed potential ^i, normalized to its maximum value (j)i„, along the field 
lines whose apex altitudes are (^o) 420 and 500 km. The labeled curves in each panel are for the 
perpendicular (east-west) wavelengths: (a) 300 m, (b) 500 m, (c) 1 km, and (d) 2 km. 
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Figure 7. Dependence of flux tube integrated growth rate (^p) on the upper limit of integration: (a) 
ionospheric parameters given in Figure 1 and (b) ionospheric parameters given in Figure 4. The solid 
curve is the altitude profile of 7B for X,^ = 2 km. In Figure 7a the dashed curve represents 7F as a function 
of Ao when {;2oo is used as the upper limit of integration and the dot-dashed curve represents the same 
when (;i3o for AQ < 330 km and (^x^^ for AQ > 330 km are used as the upper limits of integrations. In Figure 
7b the dashed curve represents "YF as a function of AQ when (^2^,^ is used as the upper limit of integration 
and dot-dashed curve represents the same when (;,4o for AQ < 420 km and ^no for AQ > 420 km are used 
as the upper limits of integrations. 

(flux tube integrated growth rate) and 7B (ballooning-mode 
type growth rate) are in the 24-40% range when the 
wavelength is 300 m and in the 12-18% range when the 
wavelength is 2 km. In terms of the grovilh period (one e- 
folding time), the differences are in the 7-12 min range 
when the wavelength is 300 m and in the 3-5 min range 
when the wavelength is 2 km. If 8-10 growth periods, say, 
are needed for the nonlinear saturation of the instability, the 
differences in the saturation time can be quite significant. 
For the other model ionosphere given in Figure 4 the 
differences are somewhat smaller but are still significant. 
Furthermore, only the ballooning-mode type description 
provides information on the spatial profiles of the excited 
modes. TTie localized spatial structures of the linear modes, 
that are found in the ballooning-mode type description and 
which are made possible by the sharp increase of plasma 
resistivity (namely, Ris) in equation (45)) along the curved 
magnetic field line, are expected to impose topological 
constraints on the nonlinear evolution of the instability 
and thus to play an important role in the determination of 
the nonlinear state of the plasma. In summary, the balloon- 
ing-mode type description provides a physically more 
accurate and more complete description of the equatorial 
plasma instability. Since the instability and its consequences 
are usually observed in the fully developed nonlinear stage, 
any observational evidence in support of the above con- 
clusion has to come from the comparison of the predictions 
of the nonlinear study of the instability using the three 
theoretical formulations with the observations. Although the 
nonlinear evolution of the instability using the local and the 
flux tube integrated descriptions has been studied by several 
authors [see Keskinen et al, 1998, and the references 
therein], similar study using the ballooning-mode type 
description is yet to be performed. The ballooning-mode 
type description of the nonlineariy saturated state of the 
instability may predict certain features, concerning either 
the spatial structures of the bubbles and plumes or the power 
spectrum of density and electric field fluctuations or both, 
that are distinct ftom those predicted by the other two 
descriptions. Ground-or space-based experiments may then 
be planned to observe these distinct features. 
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